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Abstract—Content-based image retrieval relies critically on the
use of a computerized measure of the similarity (i.e., relevance)
of a query image to other images in a database. In this work, we
explore a superivised learning approach for retrieval of mammo-
gram images, of which the goal is to serve as a diagnostic aid for
breast cancer. We propose that the most meaningful measure is one
that is designed specifically to match that perceived by the radiol-
ogists in their interpretation of mammogram lesions. In our ap-
proach, we model the notion of similarity as an unknown function
of the image features characterizing the lesions, and use modern
machine-learning algorithms to learn this function from similarity
scores collected from radiologists in reader studies. This approach
is evaluated using data collected from an observer study with a set
of clinical mammograms. Our results demonstrate that the pro-
posed machine learning approach can be used to model the notion
of similarity as judged by expert readers in their interpretation of
mammogram images and that it can outperform alternative simi-
larity measures derived from unsupervised learning.

Index Terms—Content-based image retrieval, mammogram,
multidimensional scaling, perceptual similarity, similarity mea-
sure, supervised learning.

I. INTRODUCTION

T HE PURPOSE of content-based image retrieval (CBIR)
is to choose images from a database on the basis of image

content, such as color, texture, object shape, etc. [1], such that
the retrieved information is most relevant or similar to a user’s
query. In recent years, there have been growing interests in de-
velopment of CBIR for medical images [2], [3]. In a clinical
decision-making process, CBIR can be used as a diagnostic aid
by displaying cases of similar visual appearance with known
pathologies. It can also be useful as a training tool for med-
ical students in education, follow-up studies and for research
purposes.
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CBIR for medical images is challenging due to the com-
plexity in their content in relation to the disease conditions. As
a consequence, many of the useful image features in traditional
CBIR are no longer adequate. For example, global image
features (such as gray-scale histogram) would not be salient for
describing the characteristics of pathological regions or lesions
which are typically localized in the images [2]. In such a case,
it is important to derive quantitative features that correlate well
with the anatomical or functional information perceived as
important for diagnostic purposes by the physicians.

Breast cancer remains to be a leading cause of death among
women in developed countries. Currently mammography is the
dominant method for detection of breast cancer. But it is still
far from being perfect. The high sensitivity of screening mam-
mography is compromised by its low specificity to benign le-
sions, which often appear mammographically similar to malig-
nant lesions [4], [5]. Application of CBIR to mammography has
been pioneered by Swett [6], where a rule-based expert system
was developed to display chest radiographs from a library of im-
ages. In [7], a retrieval system for mammograms was developed
based on tumor shapes. Kuo [8] studied CBIR for breast tumor
based on sonogram. In our previous work [9], we developed a
CBIR system for retrieving similar mammogram images from
a database, of which the goal is to serve as a diagnostic aid to
radiologists in their interpretation of mammograms. We conjec-
ture that by presenting perceptually similar mammograms with
known pathology to the one being evaluated, the radiologists
could reach better informed decision in their diagnosis.

A key in the development of CBIR is the definition of the
measure used for describing the similarity between a query
and the images in a database. In [9], we proposed a supervised
learning approach in which the similarity measure between
two lesion images was modeled by machine learning from
examples collected in human-observer studies. The rationale
behind this approach is that the similarity metric must conform
closely to the notion of similarity used by radiologists when
they interpret the mammograms and that simple, mathematical
distance metrics developed in the context of general-purpose
image retrieval, e.g., Euclidean distance [10], Mahalanobis
distance [11], and the earth mover’s distance [12], may not be
adequate. In [9], the similarity between a pair of mammograms
was based on the perceptual similarity of their clustered micro-
calcifications (MCs).

MCs are calcium deposits of very small dimension and ap-
pear as granular bright spots in mammograms. MCs can be an
important early indicator of breast cancer in women. Though
commonly seen on mammograms, MCs are often difficult to di-
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agnose. This greatly compromises the quality of radiologists’
biopsy recommendations, which is an important issue in breast
cancer diagnosis [13]. In [9], for the purpose of demonstrating
feasibility, the notion of similarity between two lesion images
was based on only the geometric distribution of the MCs, and the
image features of individual MCs were ignored. Our goal at the
time was first to demonstrate that the notion of similarity could
be modeled by a machine learning approach. Encouraged by the
success in [9], we now extend this approach by using similarity
data collected from clinical expert readers in their interpretation
of MCs, where the image features of individual MCs are con-
sidered. This will bring us one step closer toward the eventual
development of a clinical diagnostic aid. The added difficulty
with individual MCs is that their visual appearance can be quite
subtle and may vary a great deal in mammograms. This to a
large extent contributes to significant inter-observer variations
in interpretation of clustered MCs [14]. Therefore, it is impor-
tant to investigate to what degree the judgment on perceptual
similarity by experts can be modeled by the image features of
the individual MCs.

In this study, we use a set of data collected from a group
of expert readers to investigate the feasibility of a machine
learning approach for modeling perceptual similarity. We also
compare the supervised learning approach with alternative sim-
ilarity measures based on unsupervised learning. Furthermore,
the multidimensional scaling (MDS) technique is used as a
perceptual evaluation tool for displaying the retrieved results.

II. METHODOLOGY

A. Supervised Learning-Based Similarity Measure

As described in [9], the notion of similarity is modeled as a
nonlinear function of the image features in a pair of mammo-
gram images containing microcalcification clusters (MCCs).
Specifically, let vectors and denote the features of two
MCCs at issue. We use the following regression model for their
similarity coefficient (SC):

(1)

where is a function determined using support vector
machine (SVM) learning [15], and is the modelling error.
The similarity function in (1) is trained using data sam-
ples collected in an observer study. For convenience, we denote

by with .
Assume that we have a set of training samples, denoted by

, where denotes the user similarity score
for the MCC pair denoted by . The regres-
sion function is written in the following form:

(2)

where is a mapping implicitly defined by a so-called
kernel funciton which we introduce below. The parameters

and in (2) are determined through minimization of the
following structured risk:

(3)

where is the so-called -insensitive loss function, which
has the property that it does not penalize errors below the pa-
rameter , defined as

(4)

As with the case of classification, the constant in (3) de-
termines the trade-off between the model complexity and the
training error. In this study the Gaussian radial basis function
is used for the SVM kernel function , where

. The regression function in (2) is character-
ized by a set of so-called support vectors [15]

(5)

where are the support vectors, and is the number of the
support vectors.

To model the similarity between two feature vectors, we want
to learn a symmetric function satisfying , i.e.,
the notion of similarity is commutative. This can be achieved by
duplicating the training image pairs, i.e., first with and
then with . We can explicitly enforce this property in the
SVM cost function as

(6)

Here, .
With this formulation, the SVM training algorithm yields the

global optimum of a symmetric Lagrangian. The resulting re-
gression function can be written as

(7)

That is, if a training sample is a support vector, i.e.,
, then its symmetric sample is also a support

vector and . This will ensure that the solution is sym-
metric: . A detailed proof of this is given in Ap-
pendix A.

B. Similarity Measure From Expert Observers

1) Data Set: The proposed retrieval framework was de-
veloped and tested using a database of mammogram images
provided by the Department of Radiology at the University
of Chicago. The database consists of a total of 200 different
mammogram images of dimension 1024 1024 (some are
512 512) from 104 patients with known pathology (46
malignant, 58 benign), digitized with a spatial resolution of
0.1 mm/pixel and 10-bit grayscale. All these images contain
microcalcification clusters (MCCs). The MCCs in each image
have been identified by expert radiologists.

2) Human Observer Study: With 200 images we can form as
many as 19 900 different image pairs. However, it would be too
time-consuming (and also unnecessary) to score all of them in
an observer study. Instead, we selected a subset consisting of a
total of 600 representative image pairs for the observer study.
These image pairs were selected using the following procedure
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Fig. 1. Anchor image pair ��� � ��: original view (top) and magnified view
(bottom).

Fig. 2. Anchor image pair ��� � ��: original view (top) and magnified view
(bottom).

so that they represent the spectrum of the image pairs in terms
of similarity. First, the 200 images in the database were parti-
tioned into ten different groups by the -means method based
on the features of their MCCs. The features used were the eight
image features in [13] which were demonstrated to have high
discriminating power for cancer diagnosis. Next, a total of 300
intra-group pairs were randomly selected, of which each pair
was formed by images from a common group. Finally, a total
of 300 inter-group pairs were randomly selected, of which each
pair was formed by images from two different groups. In both
cases, the probability that an image was selected was propor-
tional to the size of the group that it was in. Conceivably, an
intra-group pair is more likely (though not definitive) to be sim-
ilar as their image features are closer in distance; in contrast, an
inter-group pair is less likely to be similar.

The observer study was carried out by a panel of six expert
observers, who scored the 600 pairs based on their perceptual
similarity using a scale from 0 (most dissimilar) to 10 (most
similar). It consisted of the following different sessions: 1) a
“pre-calibration” session and 2) individual scoring sessions. The
goal of the pre-calibration was to establish a consensus among
the observers on a uniform measure of the perceptual similarity.
In the pre-calibration session, five “anchor” image pairs were
used to define the rating scale (their scores were 1, 3, 5, 7, 9, re-
spectively). We show in Fig. 1 through 5 five anchor pairs with

Fig. 3. Anchor image pair ��� � ��: original view (top) and magnified view
(bottom).

Fig. 4. Anchor image pair ��� � 	�: original view (top) and magnified view
(bottom).

Fig. 5. Anchor image pair ��� � 
�: original view (top) and magnified view
(bottom).

scores 9, 7, 5, 3, and 1, respectively. As can be seen in Fig. 1,
while the images may look very different, their MC features can
be very similar to an expert reader. In the individual scoring
sessions, each observer scored the 600 image pairs separately.
In addition, for the purpose of evaluating intra-observer consis-
tency, each observer also scored 30 additional image pairs; these
image pairs were presented in a random order, and each pair was
scored twice by the same observer.
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Fig. 6. MDS plot of six expert observers. No. 7 is the average of the six ob-
servers; No. 8 is a random observer.

Statistical analyses were conducted to analyze both intra- and
inter-observer consistencies to insure the integrity of the ob-
server data. For intra-observer consistency, Spearman’s rank
correlation method [16] was used to analyze the two sets of sim-
ilarity scores from each observer on the 30 image pairs. It was
found that there was statistically significant consistency within
each observer with their -values all below 0.05. For inter-ob-
server consistency, Kendall’s coefficient of concordance [16]
was computed, and there was statistically significant agreement
among the observers with -value less than 0.0001. Based on
these analyses, we selected the four observers with the highest
intra-observer consistency (2, 3, 5, 6), and averaged their simi-
larity scores for each of the 600 image pairs. The resulting scores
were used to form training samples for the SVM. We also show
in Fig. 6 a multidimensional scaling (MDS) [17] plot of the six
expert observers based on their scores. No. 7 is the average of
the six observers and No. 8 is based on a random observer for
which random scores were assigned. We could clearly see that
the scores from the six observers are close to each other and far
away from random scores.

C. Similarity Training and Feature Selection

In our previous work [9], a set of ten features was used based
on the geometric distribution of the MCs in a cluster. How-
ever, as we mentioned earlier, image features of individual MCs
are very important for diagnosis of clustered MCs. To better
characterize the similarity data by the experts, in this work we
introduced eight additional features which were demonstrated
to have high discriminating power for cancer diagnosis [13].
Consequently, there were a total of 18 features used for de-
scribing the MCCs. For the purpose of selecting the most rele-
vant features for similarity learning, we applied a feature selec-
tion procedure, called sequential backward selection [18]. The
following set of 12 features was finally selected for character-
izing a MC cluster:

1) compactness of the cluster: a measure of roundness of the
region occupied by the cluster;

2) eccentricity of the cluster: the eccentricity of the smallest
ellipse of the region (ratio of the distance between the foci
and the major axis);

3) the number of MCs per unit area;
4) the average of the inter-distance between neighboring

MCs.
5) the standard deviation of the inter-distance between neigh-

boring MCs.
6) solidity of the cluster region: the ratio between cross-sec-

tional area and the area of the convex hull formed by the
MCs;

7) the moment signature of the cluster region: computed
based on the distance deviation of the boundary point from
the center of the region;

8) the number of MCs in the cluster;
9) the mean effective volume (area times effective thickness)

of individual MCs;
10) the relative standard deviation of the effective thickness;
11) the relative standard deviation of the effective volume;
12) the second highest MC-shape-irregularity measure.

The details of these features can be found in [13]. In our ex-
periment, all the feature components were normalized to have
the same dynamic range (0,1).

III. EVALUATION STUDY

To quantify the accuracy of the learned similarity function,
we first computed the mean squared error (MSE) of the model
compared to the observer scores on the 600 pairs scored in the
observer study using a leave-one-out procedure. In addition, to
evaluate the merit of the learning-based similarity measure for
cancer diagnosis, we used the following two criteria: 1) cumu-
lative neighbor matching rate and 2) multidimensional scaling
(MDS). We compared the supervised learning-based similarity
measure against two alternative distance measures. We describe
these two criteria below in detail.

A. Cumulative Neighbor Matching Rate

We demonstrate the retrieval performance by using the
so-called cumulative neighbor matching rate achieved by the
learned similarity function as follows: for each query image,
we compute the ratio of top images that
actually match the disease condition of the query, and then
average this ratio over all the queries (in our experiment each
of the 200 images was used in turn as a query).

B. MDS as a Perceptual Evaluation Tool

MDS [17] is a powerful technique for representation and
analysis of a set of objects based on their mutual similarity
(or dissimilarity) measurements. The basic idea of MDS is to
embed the objects of interest as points in a low-dimensional
(typically 2- or 3-D) space such that the geometric distances
between the points in this space are in accordance with the
similarity measurements between the corresponding objects. In
particular, Rubner [12] recently applied MDS as a visualization
technique for retrieved images based on their texture and color
distributions.

In order to evaluate the meaningfulness of our retrieval frame-
work, we use MDS to embed the images in a 2-D space so that
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Fig. 7. MDS embedding of 30 MC clusters on a 2-D plane based on the observer similarity data.

distances in the embedding are as close as possible to the true
distances between the images. In this way, it is convenient to vi-
sualize the retrieved mammograms within a local neighborhood
of the query. In the MDS plot, both the query and retrieved mam-
mograms will be displayed (as thumbnails) in a 2-D window
according to their similarities. In this plot those mammograms
most similar to the query will be placed most closely to the query
while those less similar will be placed farther away. Besides
being more intuitive, such an MDS approach will be much more
informative, compared to a conventional approach that lists the
retrieved images in the order of their similarities to the query.
The MDS plot will not only show how similar the retrieved im-
ages are to the query, but more importantly, it will also reveal
how the retrieved images are similar to each other.

In Fig. 7 we show an MDS plot of 30 regions of interest
(ROIs) used in [9]. The solid dots represent the embedded lo-
cations of the ROIs in the 2-D plane; furthermore, higher sim-
ilarity measures between the ROIs are inverse proportionally
mapped to smaller distances between the corresponding points.
As can be seen, the MDS plot reveals some rather interesting
structure in the observer similarity data, as indicated by the two
dashed lines. To assist the interpretation of the data, we have
added these dashed lines to indicate how the ROIs are clustered
in the plot according to the geometric distributions of the MC
clusters (MCs are marked using cross).

In our retrieval framework, we will generate MDS plots ac-
cording to learning-based similarity measure. Besides being a
displaying tool for retrieved images, we can also apply MDS for
browsing and exploring either all the images in a large database
or only those images in a certain disease category. The MDS
plot in such a case will produce a global view of these images,
in which similar images will be clustered together according to
certain image attributes. In a sense it could serve as a guide map
for navigating and retrieving cases from the database.

C. Alternative Distance-Based Similarity Measures

We compare the supervised learning-based similarity mea-
sure against two alternative distance measures: 1) discriminant
adaptive nearest neighbor (DANN) and 2) normalized cut
(Ncut).

1) DANN Measure: DANN [19] is an improved version of
the nearest neighbor (KNN) measure based on the Euclidean
distance [10], [20] for computing the similarity between two im-
ages. In DANN, a locally adaptive form of the nearest neighbor
measure is used to ameliorate the curse of dimensionality. The
distance between a point and a query is defined as

(8)

In KNN, the matrix is the identity matrix . In DANN, with
a local discriminant model, the local within- and between-class
covariance matrices are used to define the optimal shape of the
neighborhood . In (8), the matrix is computed as

(9)

where and are the between- and within-class covari-
ance matrices, respectively, which are computed from
local neighbors of . Specifically,

and is a small
tuning parameter, and is the identity matrix.

The matrix is determined iteratively (initially with ) to
obtain the adaptive shape of the neighborhood. It shrinks the
neighborhood in directions the local class centroids differ, with
the intention of ending up with a neighborhood in which the
class centroids coincide. In DANN, and are determined
empirically from the data.

2) Ncut Measure: Normalized cut [21] originally is a method
for image clustering. When applied for retrieval [22], it retrieves
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Fig. 8. Cumulative neighbor disease matching rates achieved by different retrieval measures.

a cluster of images rather than a set of ordered images. Here, we
adapt this clustering method to mammogram retrieval.

In this method, a graph representation of the neigh-
boring target images is defined as , where the
nodes represent the images, and the edges

are formed between every pair
of nodes. Then non-negative weights are defined for the
edges according to the similarity (a distance function; here the
Euclidean distance is used as ) between
the nodes. The weights are then organized into an affinity
matrix. Clustering can then be formulated as a graph-parti-
tioning problem. With this method, the images are organized
into small groups so that the within-group similarity is high,
and the between-group similarity is low. The images in the
group where the query image resides are retrieved. Here we
used a two-stage hierarchical fashion as in [22] to speed up the
process for mammogram retrieval: in the first stage, the top
nearest neighboring images for a query image are treated as the
target images; in the second stage, the Ncut clustering method
is applied to the query image and its nearest neighboring target
images to obtain the final retrieval results.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

The SVM similarity model described in Section II was trained
using the observer data. Besides the human scores for the 600
image pairs, we also added the following pairs for training:

1) ;
2) if and are different views from the

same case.
With a leave-one-out procedure, the SVM model achieved a

MSE of 0.0334 per image pair compared to the observer scores.
Next, the trained SVM similarity model was tested with the

200 images in the database, where each of the 200 images in the
dataset was used in turn as a query image. The average cumu-
lative neighbor matching rate was calculated in the end. Sim-
ilarly, we also applied the DANN and Ncut measures for re-
trieval. The test results are summarized in Fig. 8 for the different
methods, where the average matching rate is plotted against ,
which is the number of top retrieved images for each query.
In particular, for SVM, the top most similar image can match
the disease of the query 72.5% of the time. This is significantly

Fig. 9. Example 1: top three images retrieved by different similarity measure
models. (a) SVM, (b) DANN, (c) Ncut.

different from the result by random pairing (of which the ex-
pected matching rate is 50.75%). As can be seen, the best perfor-
mance was achieved by the SVM model. The parameter settings
for the different methods were chosen by the leave-one-out re-
trieval procedure and shown as follows: SVM (Gaussian kernel,

, DANN , and
Ncut .

In Figs. 9–11, we show some retrieval examples for three
given query images by different similarity measure models.
The individual MCs in each mammogram are marked out for
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Fig. 10. Example 2: top three images retrieved by the different similarity mea-
sure models. (a) SVM, (b) DANN, (c) Ncut.

better visualization. As can be seen from these examples, the
learning-based similarity measure can indeed achieve mean-
ingful retrieval results and perform better than other similarity
measure models. In constrast, DANN performed well in ex-
amples 1 and 3, and Ncut achieved good results in examples 2
and 3. Furthermore, in Figs. 12 and 13 we show MDS plots of
retrieved results by the learning-based similarity measure for
the first two examples.

V. CONCLUSION

In this work, we investigated a supervised learning ap-
proach for content-based mammogram retrieval based on
expert observer similarity perception. The proposed similarity
model was tested using a set of clinical mammograms. It was
demonstrated to achieve significant improvement in retrieval
performance over unsupervised learning methods. Encouraged
by this success, in future work we plan to investigate whether
such a system can serve as a more intuitive aid to radiologists.

APPENDIX A
SYMMETRIC SVM FOR REGRESSION

To measure the similarity between two feature vectors,
we want to learn a symmetric similarity function satisfying

Fig. 11. Example 3: top three images retrieved by the different similarity mea-
sure models. (a) SVM, (b) DANN, (c) Ncut.

Fig. 12. Example 1: MDS display of retrieved results by learning-based simi-
larity measure.

. For this purpose, we duplicate the image
pairs, one with and the other with . Then the cost
function for SVM regression is

(10)
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Fig. 13. Example 2: MDS display of retrieved results by learning-based simi-
larity measure.

Here, . Ac-
cordingly, the Lagrangian function is defined as

(11)

The goal is to minimize with respect to the weight vector
and slack variables and . By taking the partial

derivatives and setting them to zero, we obtain

(12)

(13)

(14)

(15)

(16)

Next, substituting (12)–(16) into (11), we obtain the dual-
optimization problem

(17)

Since and ,
(17) is a symmetric function for and . The final
regression function can then be written as

(18)

where . Thus, if a training sample
is a support vector, then its symmetric sample is also a

support vector. Hence, .
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